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Abstract .  Monte Carlo simulations of two-dimensional fluids with a truncated 
Lennard-Jones interaction in the N V T  ensemble are analysed with a block density 
distribution technique, for N = 256 and N = 576 particles. It is shown that below 
Tc (critical temperature) the block density function develops a well defined two-peak 
structure. From the locations of these two peaks the densities of the two coexisting 
phases can be reliably estimated. In the one-phase region the width of the single peak 
is used to extract information on the compressibility, by extrapolating the results for 
finite block size versus inverse block linear dimension to the thermodynamic limit. 
Studying the temperature dependence of the fourth-order cumulant of the block 
density distribution at  the critical density for various block sizes, the location of the 
critical temperature is found from the intersection of the cumulants, just as in the 
simpler case of Ising models. Our results suggest that finite-size scaling techniques 
can be used to analyse the critical properties of Lennard-Jones fluids and related 
systems. 

1. Introduction 

The calculation of the phase diagrams of fluids from information on intermolecular 
forces by Monte Carlo or molecular dynamics computer simulation has remained of 
outstanding interest since the introduction of these techniques [l,  21. Despite very 
impressive progress (see [3-91 for some recent reviews), it still is a difficult problem, 
even for a simple fluid, to  study the region near the critical point of the gas-liquid 
transition, and precisely estimate the location of the gas-liquid coexistence curve, 
characterising the related physical properties (e.g. compressibilities) quantitatively. 
Although this problem has been considered extensively and various approaches to 
deal with it have been devised (see e.g. [lo-201 for methods successful in conditions 
away from the crit,ical region), there still is need for additional and complementary 
approaches. 

In the present paper we apply such an approach to  the two-dimensional Lennard- 
Jones fluid. Our method is an extension of finite-size scaling techniques [2l-251, which 
are a standard tool for the analysis of phase transitions of lattice models [3 ,4 ,5 ] .  

t Work done in collaboration with the Condensed Matt,er Group of SISSA, Trieste. 
I I Present and permanent address. 
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While for a Monte Carlo simulation in the NVT ensemble of a fluid ( N  being the 
number of particles, V the total volume of the box and T the temperature) the average 
density p = N/V  of the system is strictly constant, we can observe fluctuations of 
the density in subsystems. For a liquid-gas phase transition, the density difference 
between the liquid and the gas phases is the order parameter of the phase transition, 
and hence the study of the density fluctuations is of key importance in understanding 
the phase transition. The  change in the properties of the density distribution function 
of subsystem cells contains fairly complete information on the liquid-gas transition. 
We shall show that  the densities of coexisting phases can be estimated reliably from the 
distribution function. The behaviour of the compressibility [26] and the location of the 
critical point can also be extracted from the information contained in the distribution 
functions. 

While the spirit of our approach is related to  the idea of directly studying phase 
coexistence between two system cells, a cell being in the fluid state and one in the gas 
state, which can exchange atmoms a t  constant pressure [19], the distinguishing feature of 
our approach is the introduction of finite-size scaling concepts which thus allow a sys- 
tematic study of size effects, which we consider indispensable near a critical point [24]. 
Our method thus generalises the approach of [21], which there was formulated for a 
lattice gas (Ising) model, t o  an off-lattice fluid. 

In section 2 we summarise the main general theoretical ideas about the density 
probability distribution function PL(p)  for subsystems of linear dimension L ( L  x L 
in d = 2 dimensions or L x L x L in d = 3 dimensions), which constitute the basis of 
our approach. Section 3 gives the main facts on our Monte Carlo simulation of the 
two-dimensional fluid with (t<runcated) Lennard-Jones interaction, and gives some ruw 
data on configurations of the syst8em and the corresponding P L ( p ) .  Section 4 discusses 
the estimation of the coexisting densities at. the gas-fluid transition, while section 5 
discusses the estimation of the critical point and the compressibility in the one-phase 
region. Section 6 contains our conclusions and gives an outlook on possible future 
extensions. In the appendix we work out some predictions based on a simple van der 
Waals approach, which can be useful for comparison to  our numerical results. 

2. The density distribution function P , ( p )  in subsystems 

In the statistical mechanics of many body systems it is a familiar concept to  divide 
the system into cells or blocks of finitre dimension L (figure 1). Defining the pa.rticle 
number in the block as Ni, with Ci Ni = N ,  the density pi in the i th block becomes 

S being the linear dimension of the total system. Thus ( S / L ) d  = M t  subsystems are 
studied simultaneously. Note also that in one simulation run we use the same particle 
configurations t o  investigate several choices of Mb simultaneously, and thus the study 
of a single (but large enough) system already allows some estimation of finite-size 
effects. 

We focus attention on the moments of the distribution function 
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where PL(p)  

1 .oo 
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Figure 1. Snapshot picture of the system containing N = 256 particles a t  a reduced 
density p = 0.3 (for definitions see section 3) and reduced temperature T = 0.90. 
The cell of total linear size S is divided into blocks of linear dimension L = S/Mb,  
where Mb is an integer. An example for Mb = 6 is shown. All lengths in the figure 
are normalised to S/2 and the z , ~  coordinates of the particles are in the interval 
( - l ,+l) .  The frame around the cell is for making clear that periodic boundary 
conditions have been used. 

is the average of the density distributions PL(pi)  for i = 1, .  . . , M f ,  i.e. 
all subsystems are averaged together. The zeroth momentis fixed by normalisation of 
probabilities and the first moment is of no interest either, since ( p )  = N/V = N / S d  
is held fixed. The  second moment, by standard fluctuation relations (271, is related to 
the isothermal compressibility I<, 

( ( ~ p ) ’ ) ~  = ( ( p  - ( p ) ) 2 ) L  = L - ~ ( ~ ) ~ R , T I ~ ~ ) .  (3) 

Here our notation emphasises that A’gl is the standard isothermal compressibility 
only in the thermodynamic limit N --+ CO and hence L --+ CO, while for small L we 
expect systematic deviations due to  finite-size effects, which will be discussed later. 

A useful quantity to  be considered is the reduced fourth-order cumulant, which we 
denote as U,  [21] 

For a state within the one-phase region, the distribution PL(p) is approximately Gaus- 
sian if L by far exceeds the correlation length of the order parameter fluctuations 
(i.e. density fluctuations) [27], L >> ( 

PL(P) = Ld’2(2.((AP)2))-1’2 exP[-(Ap)’/2((Ap)’),I 

oc exp{ -[( Ap)’/2( p )  ’1 [ L d / (  k, TI<!$))]}. ( 5 )  
As is well known, U,  is zero for the Gaussian distribution, ( 5 ) .  Of course, there 

are corrections to  this result since ( ( A P ) ~ )  differs from 3((Ap)’); by a connected part 
of a four-particle correlation function. Thus we can write 

(6) U, = L- d x, (4) /3I<$ 
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where xi(*) tends to  a finite non-zero constant as L + 03. Obviously, U, - 0 as 
L + 03. 

The situation is different for a state in a two-phase region where (5) has to  be 
replaced by (again assuming L >> E )  

In (7), we have approximated the distribution function as a superposition of two 
Gaussians centred around the densities pgas, pliq of the two coexisting phases. The 
relative weights of the two phases are fixed according to  the lever rule. 

Equation (7) is not exac t  in  the limit L >> c ,  since interfacial free energy contri- 
butions are neglected [21]. It can be shown i n  analogy to the arguments presented for 
lattice gas model that ,  for pgas < p < p,lq, the decrease of I n  P L ( p )  is not proportionally 
to  the volume, as suggested by (7)  

InPL(p)  0; - L ~  

but the leading decay occurs proportionally to  the interface area 

lnPL(p)  0; - L ~ - '  

Equation (7) is a reasonable starting point for densities p in the vicinity of the gas 
or liquid density, respectively. 

We derive (7) from stating that PL(p)  in general can be written as (since the 
subsystems exchange particles, the grand-canonical probability density must be used) 

where f(T,p) is the free energy densit,y of the system and p the chemical potential. 
Now we can expand f (T,p)  at  p = pgas or p = pliq quadra'tically 

We must have 

for p N pg, and 
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for p N pliq, since for coexisting phases 

and hence 

involving the double-tangent construction and (13) 

fiiq = fgas + Pcoex(P1iq - Pgas) (16) 

and thus the factor exp[-(f - ,ugaspgas)Ld/k,T] is a common factor to  the proba- 
bility both a t  the gas and tr: liquid side of phase coexistence. For a coexistence of 
macroscopic regions of gas and liquid phases for pp,<p<pl iq ,  the chemical potential 
lies a t  p = pcoex, and (7) describes the approprlately weighted linear combination 
of single-phase distribution functions. Clearly, interfacial contributions to  PL(p)  are 
neglected, while bulk density fluctuations are taken into account. 

For (7) the cumulant, (4) , indeed has an interesting non-trivial behaviour , which 
makes it a suitable quantity if one wishes to  distinguish between one-phase regions 
and two-phase regions, This is already seen in the limit where (7) is simplified further, 
i.e. by neglecting bulk fluctuations, replacing the Gaussians by &functions 

It is convenient to  express the moments and the cumulant in terms of the volume 
fraction z of the liquid phase 
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and for the cumulant we get 

6 t 2  - 6 2  + 1 U = -  
3 ~ ( 1  - X)  ’ 

m (23) 

Now we will discuss this expression further. From (23) it is easy t o  see that the 

density a t  the rectilinear diameter, while for x --+ 0 or x --+ 1, U,  diverges to  -m. 
This sign change of U ,  occurs for zk = (1 f 1/&)/2. 

The  singular behaviour of U,  for p = pgas or p = pliq, where U,  jumps from 
0 t o  -00, in a finite system is rounded off, of course. It is clear that  replacing (17) 
by (7) will result in corrections of order L-d  to  the various moments in (18) and (19). 
Therefore U,  near p = pgas or p = pliq reaches only a value of order - L d .  

All these considerations apply in the limit L >> ,$ only, as has been emphasised 
above. Now we are considering the opposite case, L 5 E ,  i.e. the vicinity of the critical 
point. There the distribution function already in the single-phase region is distinctly 
non-Gaussian. Following the experience with the Ising model [21], we make a scaling 
assumption, [ E  = 1 - T/T,, ,$ - Icl-”] 

maximum value, U, = 5 ,  2 is reached for z = f, i.e. for ( p )  = (pgw + pliq)/2,  the 

P,(P) = LP’”?{(P - p,)LP/”, ( ( P )  - P c ) 1 4 - P ,  Llfl”). (24) 

Here p and v are the critical exponents of the order parameter and correlation length, 
respectively, and pc is the critical density, T, the critical temperature. The scaling 
function ?(x, y, z )  does not need to be specified explicitly a t  this point. From (24) we 
conclude 

where f 2 ,  f, and fu are scaling functions. Equations (3) and (25), together with the 
scaling relation 7 + 2 p  = dv for the compressibility exponent, imply the finite-size 
scaling expression for the compressibility 

I#) = L’/”((p)?l,.*T)-’f,{((p) - pc) l€ l -P, LI€l”}. (28) 

Of particular interest for us is the case ( p )  = p,, where the scaling functions f 2 ,  f4 

and fu have only a single argument LIcI”. In  this case the finite-size scaling technique, 
well established in the simulation of lattice models [3-6,21-251, can be carried over 
straightforwardly. In particular, the cumulants U,  for different values of L must 
intersect in a common intersection point U’ = f , ( O , O ) .  Locating such an intersection 
point can be used as a criterion to  find T,. Of course the situation is much more 
complicated than for the lattice gas model, where pc = f = f ( p g w  + pliq) holds 
exactly, since pc for off-lattice models is not exactly known in general, and also pc # 
f(pgw+pliq) for T <T,. Thus a criterion to locate pc is also needed. For this purpose, 
we note that  the functions f2 and fu should have their maximum for ( p )  = p , ,  e.g., 
for T = T, we expect a behaviour 

U,  = W P )  - P,)LP/”) (29) 
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where o(0) = U’, while O(z >> 1) N ( ( p )  - pc)-dY/PL-d, cf (6). Checking for the 
scaling described by (29) is a test that  pc has been correctly found. 

Our analysis implies that  for ( p )  = pc,  upon lowering the temperature, above 
T,, the cumulant U,  increases from very small values proportional to  L-d (6) up to  a 
universal value U’ at T,. This value is the same as is observed in the Ising (lattice gas) 
model a t  the same dimensionality. For T slightly below T,, U ,  reaches its maximum 
positive value, = i ,  and then it decreases again. U,  approaches the value U ,  
given in (23), but c differs more and more from 2 = f as the temperature is lowered, 
due t o  the increased difference between pc and $(pliq + p ). Thus the temperature 
variation of U,  is not a monotonic increase with decreasing temperature, as it is in 
the lattice gas model for pc = f. 

In practice the simulations consider rather small block sizes L,  where many of 
the relations written down here are not yet strictly valid. The  relations (24)-(29) are 
valid only in the limit L -+ 00, ( -+ 00, L/(  finite, and disregard corrections to finite- 
size scaling. Likewise, also for L >> (, where (5) and (7) are supposed to  hold, the 
eflective compressibility I<!$) defined from either the second moment of the density 
fluctuation in a subblock (3), or from the half width of the distribution ( 5 )  will differ 
from the physical compressibility A’, G resulting in the thermodynamic limit. 
To  leading order, we expect that  I<, and A’?’ differ by a boundary correction 

Bas 

The justification for (30) comes from comparing the microscopic definitions 

and 

where the second integral i n  (32) is extended to the total volume. The integrand in 
both (31) and (32) is zero except if the points T ,  r’ are not much farther apart than a 
distance ( (with ( << L). Now it is clear that for points T close to  the wall boundary 
also correlations ( [ p ( ~ )  - ( p ) ] [ p ( ~ ’ )  - ( p ) ] )  contribute to  (32), where T’ is outside the 
cell (T’ must lie in a region of width E adjacent to  the boundary of the cell). These 
contributions are missing from (31). Thus the difference between (31) and (32) should 
be due t o  a surface to  volume ratio, i.e. a factor (/L, as anticipated in (30). 

3. Monte Carlo results 

The  simulations were performed for a two-dimensional fluid with a pairwise Lennard- 
Jones potential 
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( b l  N.576 9-0.30 T = 0 . 5 0  ( a 1  N=576 9.0.30 T = 0.70 

truncated a t  1' = 2 . 5 ~ .  We used systems with N = 256 and N = 576 particles in a box 
of quadratic shape ( S  x S )  and periodic boundary conditions. Standard Metropolis 
Monte Carlo methods [1,3-71 were used, applying the NVT ensemble. 

Since in the vicinity of the liquid-gas transition we have to  expect very strong 
and long-lived density fluctuations, i t  is not a priori clear that  an analysis along the 
lines of section 2 is practically convenient with a reasonable effort in computing time. 
Therefore we decided to  work with small values of N ,  since this ensures that proper 
equilibration of the system is always possible for all densities and temperatures, in 
spite of critical slowing down. A definitive study of the immediate neighbourhood of 
the critical point must choose much larger N than chosen here. We defer such a study 
to a later stage of this project, while the present work has the character of a feasibility 
study. 

The strong density fluctuations are already apparent from the snapshot pictures of 
system configurations (figure 2). Here and in the following the density is measured in 
units of g2 and the temperature is measured in units of c / k B .  The density ( p )  = 0.3, 
shown in figure 2, is close to  the critical density, and T = 0.5 is close t o  the critical 
temperature. Already in figure 2(a )  we see strong density fluctuations but their typical 
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1.40 

length scale ( clearly is much less than the box size, ( is comparable to  the box size 
in the case of figure 2 ( b ) ,  and figure 2(c) corresponds to  a distinctly phase-separated 
state, where a large liquid droplet coexists with a low-density gas region. 

l o 1  i a m  

0.50 

0*15 

pL(Q) MCS 1 
1.12 

1 
000 a 

am a 5 0  1.00 1.50 2.00 

P /<P> 
Figure 3. Probability distribution PL(P) for 
N = 256, T = 0.90, ( p )  = 0.30 and h f b  = 5 
(L = S/Mb) ,  afkr taking averages over ( a )  
10000 MCS and ( b )  100000 MCS.  

000 - 
500000 MCS 

1.50 
p,cei 

0.0 1.0 2.0 3.0 

P/-=P’ 
Figure 4. Probability distribution P L ( ~ )  for 
N = 576, T = i1.45, ( p )  = 0.30 and h f b  = 6, 
after taking averages over (a) 5000 MCS and ( b )  
500000 MCS. 

Starting from a configuration of particles ordered in a square lattice, a number of 
Monte Carlo runs were performed in order to melt the system. Then up to lo6 Monte 
Carlo steps (MCS)/particle were used to  thermalise the system at the temperature 
and density, where we want to  perform averages. This large effort in equilibration was 
found necessary, since otherwise long-wavelength Fourier components of the density 
still were out of equilibrium, and hence some features of P&) for large L systemati- 
cally in error. 

Similarly, a large statistical effort is needed in order to sample the density prob- 
ability distribution PL(p)  reliably (figures 3 and 4) .  This function is not recorded at  
each MCS, but after a sampling one gives time for the particles to diffuse out of the 
initial subblock; in fact the statistics for the larger block sizes is worse than for smaller 
block sizes. If one takes a sample of t,he order of lo4 MCS/particle only, PL(p)  still 
exhibits a lot of spurious structure, and a reliable moment analysis is not possible. 
While far above T, in the one-phase region an effort of about lo5 MCS/particle is 
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lo1 N=576 T.0.45 9:0.30 MCS=10000 I C )  "576 T.O.45 9-0.30 MCS-900,000 

1. 

0. 

- 1. 
- 1. 0. 1. 

l b l  N.576 T.O.45 9-030 M c S = q o O ~  

- 1. 0. 1. 

- 1. 

1. 0. 1. 

Figure 5. Snapshot pictures of the phase 
separated system containing N = 576 par- 
ticles at a reduced density of ( p )  = 0.30 
and T = 0.45, at a simulation time t = 
(4) 10000 MCS,  ( b )  400000 M C S  and ( c )  
900000 MCS, showing the slow rearrangement 
of the gas-liquid interface region. 

sufficient to  obtain a well-behaved P L ( p ) ,  see figure 3, this effort still is not enough 
in the two-phase coexistence region, where we found it is necessa.ry to  use a t  least 
5 x lo5 MCS/particle (figure 4). This is expected due to  the slow relaxation of the 
interface region between liquid and gas (figure 5). We present such details of the 
analysis as a warning a.gainst too hasty a conclusion. In figure 4(a) the distribution 
averaged over lo4 MCS/particle has a reasonable looking two-peak structure, and so 
one might be misled to  stop the siinulation there: only much longer runs reveal that  
the peak positions after lo4 MCS/particle are not yet a t  their right place, nor are 
the peak heights, see figure 4(b). Of course, such difficulties are expected in view of 
the difficulties familiar from the study of first-order transitions [28,29,30] and phase 
coexistence [31] in lattice models. 

However, if these problems are understood, it is feasible to  obtain meaningful 
estimates for the probability distribution P,-((p) at  various temperatures and block 
sizes. The examples collected in figure 6 show that the expected gradual change 
from a Gaussian distribution at  temperatures far above criticality to  a double-peak 
distribution below the critical point is clearly seen. 
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N= 576 p =030 

1.50 

0.00 
0.00 1.00 2 .OO 3.00 

P'(P) 

Figure 6. Probability distiibution P L ( ~ )  plotted versus p / ( p )  for N = 576, ( p )  = 
0.30 and Mb = 6. Various temperatures are shown as indicated in the figure. 

N = 2 5 6  Q.0.30 

4 -00 

3.00 

2 . 0 0  

1 .oo 

0.00 
I 

0.0 1.0 2.0 3.0 

r 

Figure 7. 
N = 256, ( p )  = 0.30 and T = 0.90, 0.70, 0.60. 

Radial distribution function g ( r )  plotted versus T (in units of o) for 
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Table 1 .  Internal energy per particle in reduced units (the kinetic contribution is 
not included) for different values of density and temperature. The values are for the 
truncated potential without any long-range corrections. 

N P 0.90 

256 0.25 -0.749 

256 0.30 -0.873 
5 76 

5 76 

5 76 

5 76 

256 0.32 -0.922 

256 0.34 -0.971 

256 0.36 -1.018 

256 0.38 -1.068 

0.70 

-0.880 

- 1.008 
-1.007 
-1.055 
- 1.058 
-1.101 
-1.106 
-1.150 
-1.154 
-1.197 

0.60 0.55  

-1.011 

-1.145 
-1.146 -1.272 
-1.194 
-1.195 -1.322 
-1.237 
-1.245 -1.387 
-1.278 
-1.283 
-1.316 

256 0.40 -1.115 -1.240 -1.363 

Table 2. Pressure (in reduced units) for different values of density and temperature. 
The values are for the truncated potential without any long-range corrections. 

T 

N P 0.90 0 . i O  0.60 0.55 

256 0.25 

256 0.30 
5 76 
256 0.32 
576 
256 0.34 
5 76 
256 0.36 
576 
256 0.38 

256 0.40 

0.236 0.172 

0.266 0.202 
0.202 

0.286 0.214 
0.214 

0.308 0.228 
0.230 

0.332 0.242 
0.244 

0.356 0.258 

0.382 0.276 

0.134 

0.156 
0.156 0.128 
0.164 
0.164 0.134 
0.172 
0.174 0.144 
0.182 
0.182 
0.190 

0.200 

The analysis of such distribution functions along the lines suggested in section 2 is 
the main content of the present paper and will be presented in sections 4 and 5. At this 
point we note, however, that  all the quantities traditionally recorded in Monte Carlo 
simulations of fluids (radial pair distribution functions, internal energy, pressure etc.) 
can be (and have been) obtained with high accuracy from the same simulation runs 
that  yield PL(p) .  Figure 7 presents the radial distribution function g ( r )  a t  p = 0.3 and 
T = 0.9, 0.7, 0.6 as an example. In principle, an analysis of g ( r )  could yield useful 
information on the correlation length near Tc. Since the sizes of our total box are 
still quite small, and the behaviour of g ( r )  a t  large distances is distorted due to  the 
periodic boundary condition, no such analysis has been attempted here. In tables 1 
and 2 we present some of the results for the internal energy and the pressure, as 
calculated from the virial theorem, i n  the region of the p-T plane which is of interest 
in the present work. We n0t.e that, the lack of finite-size effects on energy and pressure 
for T 2 0.6 should not be taken as indicating that all size effects are small! 
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4. Estimation of the coexisting densities at the gas-liquid transition 

Equation (7) expresses the idea that PL(p)  in the two-phase region is a weighted 
average of two Gaussian peaks, which are centred a t  pgas and pliq, irrespective of 
the average density ( p ) .  Only the relative weights of the two peaks change when 
( p )  changes at constant T (for p,, < (p )  < pli, of course). Figure 8 shows that  this 
property indeed is nicely established. I t  is also seen, as expected, that  in between 
the two peaks the distribution shows distinctly non-Gaussian features. The rather 
large values of PL(p)  encountered there should be attributed to  contributions from 
interfacial regions. 

Tz0.45 N-576 

2 .I 

1.4 

0.7 

0.0 
0.0 0.2 0 . 4  0.6 0.8 1.0 

P 

T =  0 45 N.576 

(p)=O.IO 

1 

0 

P 

Figure 8.  Probability distribution PL(~) plotted versus p for N = 576, T = 0.45, 
Mb = 6, and several choices for ( p ) :  (a) includes ( p )  = 0.50, 0.60 and 0.70; ( b )  
includes ( p )  = 0.10, 0.30, 0.40. 

A primary objective of the present work is to  devise a convenient method by which 
the densities pgas and pliq of the coexisting phases can be estimated. In order to  use 
data  such as shown in figure 8 for this purpose, the dependence of the distribution 
on block size L and on particle number N must be studied (figure 9). Let us choose 
T = 0.45 and ( p )  = 0.3. It is seen that for N = 576 the gas density settles down 
a t  a value p,, 21 0.021, the liquid density a t  P , , ~  E 0.717. For N = 256 the liquid 
density seems t o  be somewhat smaller, namely pliq N 0.684. Since in this case the 
minimum in between the two peaks is much shallower, we consider the latter value as 
less reliable. Hence a t  this temperature (which is about 10 per cent less than T,) we 
are able t o  estimate p,, and piiq with accuracies of about one per cent. Choosing a 
larger value of N would certainly allow us to  improve this accuracy substantially, but 
requires distinctly more effort in computing time in order to  equilibrate the system. 

In principle, our technique should also allow one to  extract estimates for the com- 
pressibilities I<$? and I<$ at  the gas and liquid branches of the coexistence curve, 
by estimating the widths of the peaks describing the two coexisting phases (7). In 
practice, the situation is less satisfactory. On the gas side, the peak is too close to zero 
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Figure 9. Probability distribution PL ( p )  
plotted versus p for ( p )  = 0.30, T = 0.45, 
and various choices of the block sizes: (a) 

k f b  = 6,7,8;  (c) N = 576, Mb = 5 ,6 ,7 ,  
N = 576, h f b  = 6,10,15; ( b )  N = 576, 

density (at least in the example a t  T = 0.45 studied here) and therefore the peak shape 
is so distorted (note the large entry of PL(p = 0) that is due to  blocks which d c  not 
contain any atoms a t  all!) that  we consider the estimate for the width fairly unreliable. 
The analysis of the width of ;he peaks in figure 8 and 9 is also difficult because of the 
fact that  those blocks that contain pieces of the interfacial region between liquid-like 
clusters and gas-like regions give rise to densities in between the peaks; therefore these 
peaks have a distinctly non-Gaussian shape: they are not symmetric with respect to 
their peak position, pllq or pgas, respectively. Thus we have used only the part of 
the distribution for densities exceeding pllq to  estimate the halfwidth. Table 3 shows 
that the resulting data  are still quite strongly fluctuating, and the plot of L2( (Ap)2 )  
versus 1/L (this linear extrapolation is suggested by (30)) would be very irregular, 
making the extrapolation impossible. However, the rough order of magnitude can be 
estimated. 

Probably it is better t o  estimate A'$? by appropriate analytical techniques such as 
thermodynamic perturbation theory [ll]. For simplicity, we have only attempted to  
estimate the order of magnitude of A'T by using the van der Waals equation inserting 
the observed value for p into it (see the appendix). Of course, this procedure cannot 
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be quantitatively correct, since the shape of the coexistence curve near T, is 
characterised by a critical exponent p = rather than the van der Waals value p = f . 
Table 3 reveals, however, that the estimates from the simulation are about a factor 
15 larger than the estimate from the van der Waals equation, which hence probably is 
too crude an approximation to estimate the order of magnitude of Ii;. correctly [32]. 

At this temperature the virial expansion up to the fourth-order term gives a value 
for the gas density at coexistence that is too low (of the order of 0.005), the reason 
perhaps being that the virial expansion gives T, N 0.49 but a critical density that is 
too small ( p  2: 0.119) [33]. For the compressibility one cannot get better results in 
comparison with the van der Waals equation. 

However, from a more sophisticated analysis of virial expansions combined with 
previous simulations (Reddy and O’Shea [34]) we obtain pgas ~r 0.029 and pliq 2: 0.727 
in good agreement with the present work. 

Table 3. Liquid density pliq and normahed isothermal compressibility k B T p l i q I i * F  
for T = 0.45, N = 576, ( p )  = 0.3 a t  the liquid branch of the coexistence curve, for 
diffeRnt values of the parameter Mt, controlling the subblock size. Using pliq = 0.72 
in the van der Waals equation for pc = 0.30, T/Tc = 0.9 would yield kBTpIiqZi’F N 

0.0526, while use of the van der Waals prediction pc 2: 0.50 for those parametem 
would yield k B T p l i q I i $ ‘  N 1.116. 

M b  Pliq k s T p l i q I i 2  

6 0.711 0.867 
7 0.718 0.763 
8 0.720 0.730 
9 0.718 0.814 

10 0.719 0.753 
11 0.718 0.875 
1 2  0.698 1.169 
13 0.715 0.828 
14 0.722 0.830 
15 0.715 1.057 

5.  Estimation of the critical point and the compressibility in the one-phase 
region 

Figure 10 shows the probability distribution PL(p)  for N = 256 and T = 0.9,0.55 and 
T = 0.50, respectively, while figure 11 shows data for N = 576 at  T = 0.7,0.55 and 
0.50 (data for T = 0.7, N = 256 can be found i n  [26]). 

These curves show the crossover from the Gaussian behaviour of the distribution 
for L >> < to  non-Gaussian behaviour in the critical region (L N <). Applying (3) to 
these distributions we can obtain K K ) .  Since there are huge statistical fluctuations, 
runs typically were extended over up to 800000 MCS/particle. Due to the smallness 
of N the divergence of the relaxation time near the critical point (critical slowing 
down) is rounded off. 800000 MCS/particle seems to suffice even in the critical region. 
However, the size dependence of IS$!), which is linear in 1/L at high temperature 
(figure 12(a)) as expected (301, becomes non-trivial in the critical region (figures 12(b) 
and 12(c)). Then a meaningful extrapolation to the thermodynamic limit becomes 
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Figure 10. Probability distribution P L ( ~ )  plotted versus p for ( p )  = 0.30, N = 256, 
various temperatures and block sizes: ( a )  T = 0.90, h f b  = 5 , 6 , 7 , 8 , 9 , 1 0 ;  ( b )  T = 
0.55, h f b  = 5,6,7; (c) T = 0.50, h f b  = 5,6,7 , after an average of 400000 MCS; ( d )  
same as ( c )  but after 800000 M C S .  

difficult. Of course, this problem is not specific to the Lennard-Jones fluid, it occurs 
for the Ising lattice gas as well (cf figure 5 of [all). Thus a finite-size scaling analysis 
based on (28) needs to be used. A serious problem, however, is that  the analysis 
presented in section 2 really presupposes that subsystems of an infinite system are 
available, while the actual subsystems refer to a system of rather small total number 
of particles, N .  Figure 13 shows that  this caveat is relevant at rather high temperatures 
already. At T = 0.70 size effects on the extrapolated values of ICT/Kg '  are clearly 
apparent and distinctly more pronounced than size effects on internal energy (table 1) 
or pressure (table 2). This should not come as a surprise. While internal energy and 
pressure are dominated by short-range density correlations, IC, is sensitive against 
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long-range density correlations, cf (32), and the growth of these correlations (which 
ultimately become critical a t  Tc) already sets in far above T,. In order to  obtain 
high-precision estimates of ICT, i t  seems indispensable to  perform runs a t  still larger 
values of N and make sure that  the data  converge to  a well defined N-independent 
limit. 

Since such a study is very demanding with respect to  computer resources (for larger 
N also critical slowing down becomes more and more of a problem) we have not at- 
tempted t o  do this yet, but address t,he question of whether one can obtain meaningful 
estimates for the critical temperature, using the cumulant analysis of section 2. Fig- 
ure 14(a) reveals the expected trends. In the one-phase region (T = 0.70,0.60,0.55), 
the values of U,  are quite small, and also decrease with increasing block size (note that 
the largest block sizes are least reliable, since the statistics is worst and effects due 
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to  the finiteness of N introduce syst,ematic errors). At low temperatures (T = 0.45), 
U,  is quite large and increases with increasing L.  Since (p) = 0.3 for T = 0.45 is not 
a t  the density of the rectilinear diameter i(pgas + pliq) N 0.37, U,  does not approach 
the maximum positive value U, = 2/3, but settles down at  a distinctly smaller value, 
which according to  (23) should be about U, = 0.61 (taking z N 0.4). Probably N is 
too small to  have L >> a t  T = 0.45, even for the largest subblocks, and therefore it is 
not possible to  see the data  approaching that value. It is reassuring that for ( p )  = 0.4, 
a value closer to  (pgas + pliq)/2,  where according to  (23) U, = 0.65, distinctly larger 
values of U, a t  T = 0.45 are obtained throughout (figure 14(b)). 

In the vicinity of the critical point the curve U, versus S / L  is very flat, and should 
reach values close to  the expected universal value U' = 0.52 [35]. In fact, figure 14 
has a striking qualitative similarity to the corresponding data in the Ising model (see 
figure 12(a) of [21]), apart  from the fact that  the lattice gas calculation of [22] was 
carried out in the grand-canonical ensemble, where, rather than (23), U, = $ for 
T < T, at p = pcoexl the value a t  the coexistence curve. Moreover, in the grand- 
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canonical ensemble the calculation is neither affected by phase coexistence effects, 
nor by interfacial contributions, while the latter are probably pronounced in the da.ta 
presented here. 

I t  is also important to  note that near T, the U,  versus 1/L curves are not only flat 
for ( p )  = 0.3 but also for neighbouring densities, e.g. ( p )  = 0.32 or 0.34 (figure 14(b)). 
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This implies that  the dependence of U ,  on the scaling variables ( ( p )  - p c ) l r l - @  or 
( ( p )  - p,)L@/” in (25) and (29) is small. This implies for the analysis of section 2 that  
T, can be estimated from the intersection of cumulants for different L (in a U ,  versus 
T plot, figure 15), even if pc is known only very imprecisely. We feel that  pc = 0.30 is 
probably an understimation of the critical density, because the intersection point in 
figure 15 occurs for U’ N 0.31, i.e. distinctly below the expected universal value. But 
taking the evidence from figures 14 and 15 together, it seems plausible to  conclude 
that  

T, = 0.50 f 0.02. (34) 

This estimate is in the range of the previous estimates given in the literature [13), but 
it is still not precise enough to warrant a finite-size scaling analysis where (24)-(29) 
are more thoroughly tested. 

As a first check of the non-trivial variation of the cumulant with density (cf (23) 
and the comments thereafter), figure 16 gives some data  for N = 576 at  T = 0.45. As 
expected, the positive maximum of this curve occurs for a density not very far from 
the density p N 0.36 of the rectilinear diameter, while near the coexistence curve U ,  
is large but negative. 

6. Conclusions 

The present investigation shows that ideas familiar from the computer simulation 
study of phase transitions and critical phenomena, such as subblock analysis and 
finite-size scaling, can be ca.rried over t80 off-lattice problems such as critical phenomena 
and phase coexistence in the gas-liquid transition. However, it must be emphasised 
that our feasibility study shows that the problem is considerably more demanding i n  
computational resources, and the data analysis is far more difficult. 

In brief, the reasons for t,hese difficulties are as follows: 
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(i) The updating step of the Monte Carlo procedure involves a lot of calculation 
in comparison with the simplistic Ising model, for which superfast algorithms imply- 
ing special tricks such as multispin coding [36] can be implemented [37]. Since the 
program used here is necessarily several orders of magnitude slower, a calculation of 
lo5 MCS/particle takes of the order of two hours of CRAY-XMP-48 time for N = 576; 
hence even modern vector computers do not yet allow the study of very large systems. 

(ii) Using the canonical ensemble of a fluid, the finite-size properties are consider- 
ably more intricate than for the grand-canonical one. This fact is due to  the compli- 
cations involved by the two-phase coexistence, as analysed in section 2,  whereas in a 
grand-canonical simulation one would always essentially stay in a pure phase. While 
for the lattice gas the use of grand-canonical ensemble poses no simulational problems 
whatsoever, the use of the grand-canonical ensemble for dense fluids still involves a 
lot of accuracy problems [G, 7,9,16]. 

because of particle- 
hole symmetry, it is not known for fluids in beforehand. Thus the (T,  ( p ) )  plane needs 
to be scanned in the simulation. In the Ising problem a single density pc needs to be 
investigated. 

(iv) Far away from the critical point, the Gibbs ensemble [19] can be used to esti- 
mate coexisting densities with relatively modest effort. However, the present method 
is believed to be advantageous i n  the critical region, where jnite-size effects must be 
considered, which is possible with the methods presented here. 

In view of all these problems, t,he extent to which our approach can be useful was 
not clear beforehand; therefore we have described the technical aspects and problems 
of such simulations in detail. We do feel, however, that the methods developed in the 
present paper are a useful approach for studying phase coexistence in fluids, including 
the vicinity of the critical point. As in the case of the lattice gas model, extremely 
small subsystems of medium size systems can yield good estimates of the densities of 
coexisting phases. Note that a single (but long!) simulation run yields information on 
all subsystem sizes simultaneously. The compressibility both in the one-phase region 
and at  the coexistence curve also is an output of the calculation, though somewhat 
larger systems than studied here clearly are required for the desired accuracy. With 
a major effort of computing time it will be realistic to carry such a study to systems 
of a few thousand particles. Note that t,he subsystem analysis as described here can 
also be combined with a molecular dynamics simulation. 

A meaningful study of critical point properties (critical exponents and amplitudes, 
etc.) still seems to be very difficult. We think that the present techniques should be 
useful for a rough estimation of phase diagrams, e.g., one could address the behaviour 
of various adsorbates on surfaces, where atoms also experience a periodic potential due 
to the substrate. Also the extension to three-dimensional systems is straighforward. 
We intend to report on such applications i n  future publications. 

(iii) While in the Ising lattice gas the critical density is pc = 
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Appendix. Predictions based 011 van der Waals theory 

The free energy density according to van der Waals theory can be written as [27] 

where lne = 1, X is the thermal de Broglie wavelength of the fluid atoms, and molecular 
parameters are eliminated in favour of the critical density pc and critical temperature 
T,. The corresponding pressure is 

and the isothermal compressibility A', follows from 

From (A3) the estimate mentioned in table 3 is calculated, using p = pliq as given by 
the simulation, and pc = 0.3. This yields kBTpliqK$ = 0.0526 for pliq = 0.72, while 
pgas = 0.021 similarly implies rl.BTp,,,A'~ = 1.146, whereas the ideal gas value would 
be kBTpideall(geai = 1. 

It is also instructive to recall the expansion of ( A l )  valid near Tc 

pc being the chemical potential at  the critical point. The condition 

implies that p,, and pliq are solutions of the equation 

For pli, = pc ,  pgas = pc,  the coexistence curve is 

- + 2  1---. Phq - Pc 

-- \i 1 \ i ;  Pc 
= - 2  1 - -  P,, - Pc 

Pc 
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Using (A6) for T/Tc = 0 . 9  would yield pgas N 0.10,  pliq N 0.50, which is dis- 
tinctly off from the observed values. Using these estimates in (37) would yield 
IcBTp,iqKp N 1.116, kBTpg,li',$as N 2.313, instead of the estimates quoted above. 
This consideration shows tha t  even for temperature 10% below Tc the van der Waals 
equation is a very imprecise descript,ion of two-dimensional Lennard-Jones fluids, 
which should be  expected, of course. 

Finally we note tha t  the potential g ( T , p )  = f ( T , p )  - pp entering PL(p)  (cf (8)) 
can be written in the van der Waals approximation, using (4) and ,U = pc 

where we have used (AB) to eliminate (T/Tc)- 1 via - f [ ( p g a s - p c ) / p c ] 2 ,  as we consider 
densities near the gas branch. Equation (A7) can be written further as 

For p 11 pgas this is equivalent to 

2 

(A9)  
9 P - P a s  
16 

g, , , (T,p)  2: constant + -k,Tcpc ( ) 
which is the form assumed in (14), and a similar expression is readily derived for p 
near pliq. While (A9) implies a Curie-Weiss-like divergence of Zi'$,KY along the 
coexistence curve, K$asr'iq 0: (1  - T/Tc)-',  as a comparison of (A9) and (A6) and (14) 
and (15) shows, we believe tha t  (14) and (15) are more generally valid if the proper 
temperature dependence of pgas, pliqr Kgas and A'$ is used. 
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